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Thermodiffusion, as a typical case of an irreversible process of redistribution of mol- 
ecules of a mixture in the direction of the temperature gradient, is extensively employed in 
the technological process of separation of gas mixtures and isotopes. For a binary mixture 
the flux of the enriched component in such separation is expressed by the relation 

I = ~9U - -  9D~2[grad ~ - -  ~t~(l - -  ~ ) g r a d l n  T], 

where U is the velocity; p is the density; T is the temperature; ~ is the mass concentration; 
D12 is the binary diffusion coefficientl; ~t is the thermodiffusion ratio. For an elementary 
process of thermodiffusional separation the velocity U equals zero, and in this case the 
separation coefficient r w is determined from the above relation with I = 0: 

F o r  U # O, h y d r o d y n a m i c  p r o c e s s e s  b e c o m e  d e c i s i v e  i n  t h e r m o d i f f u s i o n a l  s e p a r a t i o n .  Mo-  

t i o n  of the mixture can essentially alter the efficiency of the separation process. This can 
be clearly traced on the example of the classic Clusius--Dickel thermogravitation column. The 
latter consists of two vertically placed surfaces, the space between which is filled with the 
mixture to be separated. The surfaces are maintained at different temperatures, as a result 
of which the elementary process of thermodiffusional separation occurs in any cross section 
of the column in the horizontal direction owing to the temperature difference. At the same 
time, convective motion develops in the column owing to the difference in the densities of 
the mixture near the cold and hot surfaces: The less-heated gas descends while the more- 
heated gas rises. Opposite motions take place in the column, the result of which is the 
manifold multiplication of the elementary process of separation. At the same time, the non- 
uniform temperature distribution over the surface of the column, the instability of the op- 
posite flows, and other hydrodynamic phenomena can considerably reduce the efficiency of the 
idealized separation process discussed above. 

The influence of all these hydrodynamic phenomena on the process of thermodiffusional 
separation of gas mixtures can be investigated on the basis of exact solutions of the complete 
system of Navier--Stokes equations. The number of such solutions is extremely limited, how- 
ever. The results of such investigations for plane and axisymmetric thermogravitation col- 
umns can be found in [i]. The influence of thermodiffusion on the spherical expansion of a 
binary mixture of viscous heat-conducting gas was investigated in [2]. With arbitrary motion 
of the gas mixtures it becomes a very complicated problem to obtain such solutions. In this 
case it is advisable to use various asymptotic representations of the Navier--Stokes equations. 
The results of such investigations for thin shock and boundary layers are presented below. 
Such an approach, in defining the essence of the phenomenon, makes it possible, even in the 
first approximation, to exclude any extraordinary influence of longitudinal gradients of the 
stream parameters on the flow in thin layers in the dissipative terms of the Navier--Stokes 
equations. 

I. Let us consider the supersonic flow over a blunt body of a stream of a binary mix- 
ture of nonreacting gases when processes of thermo- and barodiffusion are present. We assume 
that the disturbed region of flow is described by a two-layer model of a viscous shock layer 
[3]. In the plane (~ = O) and axisymmetric (v = i) cases the corresponding system of equa- 
tions is written in the dimensionless form 
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where uU, and e~vU, are the velocity components along the coordinates xL and e~yL connected 
with the surface of the body; r is the dimensionless distance from the axis of symmetry to 
the surface of the body; L is the characteristic length; k/L is the curvature of the surface; 
pp~/s~ is the density; pp=U2~/2 is the pressure; TU2~/2Cp is the temperature; hU2~/2 is the 
enthalpy; H = h + u2; ~ = (y -- l)/2y; X = (e~Reo)-~; Reo = p~U~L/~o; ~o is the coefficient 
of viscosity at the stagnation temperature To; R = 2e~(Cp:U~ + Cp2~2e=/e~) is the gas con- 
stant; Cp is the specific heat at constant pressure; 7 is the ratio of specific heats; j~p~. 
U~ and qp~U3~/2 are the diffusional and heat fluxes, which are defined by the equalities . 

~t ( 0a I " [ rn2 -- ~1 a |i1 p 0 In T ]I (1.2) h=z-gS-CTF-+c~(l oct) -~ ~ + l h ~ j l ,  
p.Cp OT 

q =  % Pr 0--7 4- ]~ (h~ 4- h~); 

m = m~a~ + m2u2 is the molecular weight of the mixture; Sc and Pr are the Schmidt and Prandtl 
numbers. Quantities pertaining to the component with the higher molecular weight are denoted 
by the index i and for the lower -- by the index 2, the index ~ determines parameters in the 
undisturbed stream, and w determines those at the surface of the body. 

The dependences of the thermodynamic and transfer coefficients on the parameters of state 
of the mixture were taken in accordance with experimental data [4]. An argon--helium mixture 
was used in all the calculations below. 

If the temperature of the surface of the body is considerably less than the stagnation 
temperature, attachment boundary conditions are satisfied at the surface of the body: 

u = v = 0 ,  T = Tw, ]lw = 0 .  ( 1 . 3 )  

The l a s t  c o n d i t i o n  means t h a t  a d i f f u s i o n a l  f l u x  t h r o u g h  t h e  s u r f a c e  of  t h e  body  i s  a b s e n t ,  
and i t  w i l l  be  v a l i d  o n l y  i n  t h e  c a s e  when t h e  i n j e c t i o n  or  s u c t i o n  o f  m a t e r i a l  t h r o u g h  t h e  
s u r f a c e  o f  t h e  body i s  a b s e n t .  

At t h e  o u t e r  b o u n d a r y  o f  t h e  shock  l a y e r  t h e  s y s t e m  ( 1 . 1 )  s a t i s f i e s  t h e  g e n e r a l i z e d  
Rankine- -Hugonio t  c o n d i t i o n s  w h i c h ,  i n  t h e  c a s e  o f  t h e  f l o w  o f  a b i n a r y  m i x t u r e ,  can  be  w r i t -  
t e n  i n  t h e  fo rm ( s e e  [ 3 ] ,  f o r  exam p l e )  

pv = - - s i n  ~ p = s in~ ,  sin ~(cos ~ - - u )  = %~au/ay~ ( 1 . 4 )  

sin ~(ai~ - -  ai) = Ji, sin ~(H~ --  H) = q + 2%~uOu/Og~ 

where o is the angle of inclination of the shock, which coincides with the inclination of the 
generatrix of the surface of the body in a first approximation. 

The flow structure in the viscous shock layer (below we shall call this the inner re- 
gion) is fully described by the system of equations (i.i) with the boundary conditions (1.3) 
and (1.4) at the surface of the body and at the outer boundary of this layer. In the numeri- 
cal solution of this system we used independent variables of the Mises type and applied a 
simple finite-difference scheme, of the type of Keller's "box" scheme [5], which is more 
economical than the latter and has the same (second) order of approximation in both variables. 

The flow in the region of the compression shock (we shall call it the outer region) in 
the two-layer scheme of a viscous shock layer is described by a system of ordinary differen- 
tial equations [2]. In our case, it has the form 

O~0N = ~/(Re0 sin ~) ,  0~/0 h = (3/6)(1 - -  ~ - -  p/2), ( 1 . 5 )  

O~l/a~ = [ S c ( ~ I ~  - -  ~ 1 ) -  A l/B, aT/Oq = (Pr/%)(/t~ - -  H - -  C ) ,  
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where 

A= I an / A • H 

- ~ c ~  T ~ s i n  2 6 + ( a l ~ - a l )  x 

s = I -- (t -- ~) exp (-- q). 

Here uU~ cos ~ and-~U~ s i n  ~ are the  v e l o c i t y  components along the c o o r d i n a t e s  ~L and yL, 
r e s p e c t i v e l y ;  Us i s  the va lue  of  u a t  the ou te r  boundary of the inne r  r eg ion  of f low; pp~U2~ 
i s  the p r e sw  pp~ i s  the  d e n s i t y ;  TU2~/2cp~ i s  the t empera tu re ;  ~ o  i s  the v i s c o s i t y  co- 

^2 2 ^ 2  �9 2 ^ - -  efficient; H = h + u cos ~ + v sin ~; H~ = i + 2[(ym -- l)M2~]-t; Moo is the Mach number; 
CD = Cpz&: + CD2(I -- &t); ~ = 2ex[Cpx&1 + Cp2(l -- ~t)e=/et]; y~ = (i -- 2g~)-t; ~ = m2/ml; 
~'= $~ sin -= $; $~ = I; parameters pertaining to the outer region of flow are marked by the 
symbol ^. 

An analysis of the system of equations (1.5) shows that smooth joining of the outer solu- 
tion with the inner one is possible only when the solution in the inner region is found in the 
second approximation. In the present work the solution in the viscous shock layer was found 
in the first approximation. Therefore, by analogy with what was done in [3], the conditions 
for joining the quantities 6, ~v/~y, H, and &, were used to find the solution in the outer 
region. Numerical integration of the system (1.5) was carried out by the Runge-Kutta method. 

The results of numerical calculations with Reo = 50, M~= 5, t w = Tw/To = 0.5, ~ = 0.i, 
and ~t~ = 0.24 for a sphere of radius L are presented as an example in Fig. i, where the 
variations of the quantity ~ = u/cos o, the normal velocity component v, the temperature T, 
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and the local concentration 91 = ~i[i -- (I -- m)~1] -I of the heavy component on the zero 
streamline are given (solid lines for Bt # 0, dashed lines for ~t = 0). 

As the calculations show, in a shock wave front the role of thermodiffusion in the pro- 
cess of separation of a mixture proves to be relatively small. Here the redistribution of 
components of the mixture will be due mainly to barodiffusional separation. In the adopted 
two-layer model of a thin viscous shock layer of the first approximation the influence of 
barodiffusion in the region of the transition through the shock on the redistribution of com- 
ponents of the mixture is analogous to that for the one-dimensional case [2, 6]. Allowance 
for the three-dimensionality of the flow on the process of separation of a mixture at low 
Reynolds numbers Reo was investigated in [7, 8]. 

Thermodiffusional separation of the mixture becomes decisive near the surface of the 
body at low values of tw, when the temperature gradients in the wall region of flow become 
large. Barodiffusional separation of a mixture in the wall region of the viscous shock layer 
is absent in the adopted approximation. The latter fact is connected with the conditions 
adopted here for joining the regions in the two-layer model of a viscous shock layer. With 
smooth joining this effect results in an additional increase in the concentration of heavy 
particles at the wall of the body at moderate values of Reo. This is indicated both by ex- 
perimental [7] and by calculated data [8] obtained using the complete system of Navier--Stokes 
equations. 

In hypersonic flow over bodies by a viscous gas the number of hydrodynamic similarity 
criteria determining the flow is rather large. They include Reo, M~, Sc, Pr, the temperature 
factor tw, the initial concentration ~I=, etc. In the regime of hypersonic stabilization at 
Moo >> I the Mach number is eliminated from the system of similarity criteria, in connection 
with which all the calculations below were made for the same Math number (M~ = 5). As for the 
other similarity criteria, in the problems of separation of gas mixtures being considered 
here the important ones among them will be Reo, tw, and ~ for thermodiffusional separa- 
tion near the surface of a body and Reo and ~ for barodiffusional separation in the dis- 
turbed region of flow, as the calculations show~ 

The results of numerical calculations of the separation coefficients for these two pro- 
cesses are presented in Fig. 2. In Fig. 2a we give the maximum values of the separation coef- 
ficient r~w at the surface of the body as a function of the initial molar concentration ~I~ 
of the heavy component for Reo = 50 (solid lines) and values of tw = 0.25, 0.i, 0.02, and 
0.01 (curves 1-4, respectively). The separation coefficient r: w grows as the temperature 
factor t w and the initial concentration ~i~ decrease. As ~i~ approaches one, when the 
thermodiffusion coefficient Bt can be taken as constant, its values is close to the value 

t~t(~l~) 
r1~ = determined by the elementary process of thermodiffusional separation (straight- 
line segments in Fig. 2a). The degree of separation of the mixture near the surface of the 
body hardly varies with an increase in the Reynolds number Reo > 50 and decreases as this 
criterion decreases (the values of rlw for Reo = i0 and tw = 0.i are given by a dashed line 
in Fig. 2a). A similar result was obtained in [9] in an analysis of the thermodiffusion pro- 
cess of separation on the basis of kinetic equations. 

The maximum values of the separation coefficient ris in the shock wave front as a func- 
tion of the initial concentration for Reo = 50 are given in Fig. 2b (solid line). As already 
mentioned, the enrichment of the mixture with the light component in this region is due to 
the barodiffusion process and, therefore, as the calculations show, it hardly depends on the 
value of the temperature factor t w. The efficiency of this process proves to be higher at 
low relative concentrations of the components of the mixture and, with the exception of small 
~I~ it increases as the Reynolds number Reo decreases (the values of r=s for Reo = i0 are 
given by a dashed line in Fig. 2b). 

It should be noted that at moderate Reynolds numbers the diffusion processes result in 
an increase in the heat flux q to the body with hypersonic flow over it. Its value at the 
critical point of the body as a function of the initial concentration ~i~ is given in Fig. 
2b for tw = 0.I and Reo = 50 and i0 (solid and dashed lines, respectively). Here this phenom- 
enon is due to thermodiffusion. The barodiffusion process results in a still larger in- 
crease in the heat flux to the body. Measurements made in [7] showed that for Reo = 80 and 
tw = 1 the heat flux at the critical point of a body over which a nitrogen--hydrogen mixture 
flows exceeds fivefold the corresponding flux when pure nitrogen or hydrogen flows over the 
same body. 
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2. The investigation of flows of binary gas mixtures in boundary layers when thermo- 
diffusion is present was confined to self-similar solutions. In the Dorodnitsyn--Lees vari- 
ables, 

9V �9 r~vUoo 
= rwp~pwUooax, ~ (2~)~/2 . pdy 

0 0 

the initial system of equations in this case is written in the form 

(NI")' + ~II" + ~ ~ (g -- ~/'~) -- (I -- ~) ] '~ = O, (2. l) 

.! , ! ~ q !  
]i + ml/ O, + ilg' + 2~ (N/'/")' = O. 

The dimensionless diffusion and heat fluxes jl and q appearing in it are defined as follows: 

N , 
]~ = - ~ -  [~1 + ~ ( l  - ~ ) ~ t ( g  - P ~ / ' ~ ) ]  (g - P ~ / ' ~ ) - ~ ,  

q = ~ (g' -- 2~/'/") + cp~ -- cp~ -- 
cp 

Here f' = u/U=, g = H/H~, N = 0~/0w~w, 8~ = U2~/2~, i and 8 are the Falker--Skan similarity 
parameters; a prime denotes a derivative with respect to D; parameters at the outer limit of 
the boundary layer are marked by the index ~. 

The boundary conditions of the problem are written in the form 

= 0: / = /w = cons t ,  / '  = O, g = tw, ( l  - -  2~1)] 1 = / ~ ( l  - -  al)a~,  ( 2 . 2 )  

The two main cases of i = i and 0 are distinguished in an analysis of self-similar solu- 
tions. For 8~ = 0 the first case determines the flow in the boundary layer in the vicinity 
of the critical point of a wedge with an angle of taper 8 = 2n/(n + I) (U= ~ xn). In the 
hypersonic approximation (8~ + i) this case corresponds to flow in the boundary layer on a 
body with a power-law dependence of the pressure p on the x coordinate (p ~ xn). In this 

case the similarity parameter is ~ ?-- ~ n y n +  i" 

T h e  c a s e  o f  i = 0 w i t h  8~ = 0 a n d  a l l  v a l u e s  o f  8 c o r r e s p o n d s  t o  b o u n d a r y - l a y e r  f l o w  f o r  
potential flows with V~ ~ x -~. Depending on the sign of U~, it will be either flow from a 
source or flow toward a sink and can be treated as flow in widening or narrowing channels 
with plane walls. In this case, in the absence of suction or injection (fw = 0), the system 
of equations (2.1) with the boundary conditions (2.2) is simplified and admits of the particu- 
lar integrals 

( N / " ) '  + ~[a(g  - -  ~ / , 2 )  _ (i - -  ~ ) / ' 2 ]  = 0, 

(2.3> 
]:  = 0, - F ~  + 2 ~ N  t - -  - P - F / ]  ] : co n s t .  

T h e  p a r t i c u l a r  c a s e  o f  2 i  - -  ~ = 0 a n d  ~ = 0 c o r r e s p o n d s  t o  b o u n d a r y - l a y e r  f l o w  f o r  

potential flows U~ ~ e ax, where a is a positive or negative constant. By analogy with the 
preceding case, such flows can occur in widening or narrowing channels with exponential gener- 
atrices. 

The system of equations (2.1) with different values of the parameters i, 8, and 8~ and 
with the boundary conditions (2.2) was integrated numerically using a finite-difference scheme 
of second-order accuracy. Here the solution of the finite-difference system of equations was 
found by the trial-run method [i0] with the subsequent application of an iteration process. 
Some results of the numerical calculations are given below. 

The distribution of the mass concentration ~ of the heavy component in the boundary 
layer for ~i~ = 0.76 (%~ =0,24) is presented in Fig. 3. The dash-dot lines (B~ = 0) per- 
tain to the case of i = 0 and 2i -- B = 0 while the solid (~ = 0) and dashed (8 = 0, 8= = 
0.89) lines pertain to the case of i = i. For 8~ = 0, the temperature factor in these cal- 
culations was kept constant, tw = 0.i, and for 8= = 0.89 it was varied. 
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For i = i and 8~ = 0 (solid lines in Fig. 3), the thermodiffusional separation of a mix- 
ture near the surface of a cooled body increases in the transition from accelerated (8 > 0) 
to decelerated (8 < 0) potential flows. This is indicated by the relations at(n) presented 
in Fig. 3 and corresponding to plane flow near the critical point (8 = i, curve i), longi- 
tudinal flow over a plate (B = 0, curve 2), and decelerated plane flow with a preseparation 
velocity profile (8 =4.5, curve 3). We note here that axisymmetric flow near the critical 
point occurs for 8 = 0.5. For attached flows, deceleration of the motion results in an in- 
crease in the mass concentration of the heavy component in the boundary layer by several per- 
cent. The mass concentration ~lw at a cooled surface in these regimes hardly varies with 
variation of 8, in connection with which the maximum values of the separation coefficient 
rlw in all the cases considered above will coincide j with the values of rlw obtained earlier 
for the axisymmetric critical point in hypersonic flow over a blunt body (see Fig. 2a). For 
8 < --0.5, return flows appear in the boundary layer. Further stream deceleration in these 
regimes will be limited by the conditions of stability of such flows. 

Flows in channels with straight (i = O) or exponential (2i -- ~ = O) generatrices are of 
particular interest in separation problems. The degree of separation proves to be consider- 
ably higher in them. This is indicated by the ~(n) distribution corresponding to the case 
of i = 0 presented in Fig. 3 (dash--dot line i). The increase in the mass concentration of 
the heavy component in such flow is connected with the increasing temperature gradient owing 
to the decrease in the characteristic transverse size of the flow. In this case the solution 
of the system of equations (2.1) is equivalent to the corresponding inner solution of the 
problem with i = 1 and 8 § • The same degrees of separation as above occur in channels 
with an exponential generatrix (2i -- 8 = 0). According to the numerical calculations, the 
concentration profiles across the boundary layers in these flows practically coincide. Only 
when developed zones of return flows are present does the degree of separation in such chan- 
nels start to decrease (dash--dot line 2 in Fig. 3). 

The maximum values of the separation coefficient r~w at the surfaces of the channels 
under consideration as a function of the initial concentration ~i~ of the heavy component 
for tw = 0.i are presented in Fig. 2a (dash-dot line). For all values of ~i~ the efficiency 
of separation of gas mixtures in channels proved to be higher and is determined by the ele- 
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mentary process of thermodiffusional separation (circles in Fig. 2a). The latter follows 
from the second equation of (2.3) with 8t = Bt~ = const: 

r ~  = [ ( t  - -  ~)!t~] ~ t~ 

At low concentrations of one of the components of the mixture, when the thermodiffusion coef- 
ficient ~t varies little in the boundary layer, the numerical values of r~w obtained coincide 
with the analytical values. 

The case of hypersonic flow of a gas mixture (~ § i) offers the greatest practical in- 
terest; in this case the concentration distribution across the boundary layer for tw < 1 has 
a nonmonotonic ch@racter. This is connected with the fact that as the Mach number M~o = [2~/ 
(y -- i)(i -- B~)] ~/2 increases, the ratio of the gas temperature at the outer limit of the 
boundary layer to the stream stagnation temperature decreases: 

The concentration of the heavy component will increase in this region, just as in the wall re- 
gion. The relation ~(n) for tw = 0.i is given in Fig. 3 (dashed line i). 

In the hypersonic case the degree of separation of gas mixtures can increase consider- 
ably for tw > i. A considerable decrease in the gas temperature at the outer limit of the 
boundary layer due to hypersonic stream acceleration, in a nozzle with a simultaneous in- 
crease in wall temperature, for example, leads to a considerable increase in the temperature 
gradients in the boundary layer and thereby intensifies the thermodiffusional separation of 
the mixture. As the calculations show, such separation becomes efficient even for ~ = 0.89 
(the dashed lines 2 and 3 in Fig. 3 correspond to tw = 1 and 2). 

The maximum values of the separation coefficient r2w in the hypersonic case with ~ = 
0.89 and 0.99 (dashed and solid lines, respectively) are presented in Fig. 4. Curves 1 per- 
tain to the case of tw = 1 and curves 2 to the case of tw = 2. As M~ increases, the degree 
of separation of gas mixtures in the hypersonic case becomes very high. For the elementary 
process of thermodiffusional separation such values of r2w can be obtained only for very low 
values of the temperature factor tw. 

For the determination of the flow regions in a hypersonic boundary layer enriched with 
the light and heavy components of the mixture, in Fig. 5 we present the coordinate ~, at 
which ~i ~ ~ (notation the same as in Fig. 4). These results show that as the Mach number 
increases, an ever greater part of the boundary layer, the effective thickness of which in- 
creases in the process, as is known, is enriched with the light component. In connection 
with the latter data, it must also be mentioned that, in contrast to the classic thermodiffu- 
sion column, in which counterflow motion can be unstable, the flow in a hypersonic boundary 
layer with negative pressure gradients (flow in a nozzle, for example) will always be stable. 
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LIQUID TRAPPING ON CYLINDER EXTRACTION 

V. I. Baikov, Z. P. Shul'man, and K. Engelhardt UDC 532.516 

It is important to know the thickness of the film of liquid formed on a cylindrical body, 
for example in depositing insulation on wires and also in the production of glass and syn- 
thetic fibers. The theory of [1-3] is restricted to low extraction velocities. The approach 
considered below is applicable to a very wide velocity range. 

i. Consider a cylinder of radius R extracted at a constant velocity U from a suffi- 
ciently large volume of liquid (Fig. i). The thickness of the film remaining on the surface 
is determined by the interaction between the internal friction, the mass forces, and the sur- 
face tension. The effect of these forces on the trapping are determined primarily by the ex- 
traction speed and the properties of the medium. 

The liquid in the film is simultaneously extracted by the cylinder and flows under grav- 
ity back into the bath. Therefore, at the surface of the film there should be a stagnation 
line, where the flow direction reverses. The stream lines passing through this separate the 
part of the liquid carried by the cylinder from the rest in the bath. We write the equations 
of motion for each of these regions and find the condition for linking up the solutions. 

2. We set the z axis along the flow parallel to the cylinder axis, while the r axis is 
perpendicular to it and passes through the stagnation line. The region of entrainment is 
bounded from below by a plane perpendicular to the axis of the cylinder and passing through 
the stagnation line, while upwards it passes into the region of constant film thickness ho = 
$o -- R. Physical considerations show that the characteristic dimension L of this region con- 
siderably exceeds ho, i.e., ho/L = e << i. 

We write the Navier--Stokes equations and the boundary conditions for the extraction re- 
gion: 

+ g + " + v "  o-v- + -gT  ) ' ( 2 . 1 )  

at' av l Op + v ( O z v  v i av o2o~ 
u ~ + u Or = p Or ~ Or 2 r 2 + ' - ~  0"-7" + az ~ } '  

O~ Ov v O; 
o--2-+-~r  + - y - =  

Or b "-~s + l - -  k dz J ] k -~ + =0 at r=~ (2.2) 

" d~ ~21-!  [ d ~  [I + -- 

= 2 ~  l--k-~-s] ,i likds]j__~_r + +  at r=~; 

u = U ,  v - ~  0 at r = R; ( 2 . 3 )  

d~ 
v---- u ~ at r = ~, ( 2 . 4 )  
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